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1. INTRODUCTION 

Bundles and bundle structures have gained wide currency in modern 
approaches to certain topics in quantum physics, significant applications 
appearing in connection with gauge theories (e.g., Atiyah and Jones, 1978), 
theories of geometric quantization (e.g., Kostant, 1970; Sniatycki, 1974), 
and in numerous other contexts. In this paper we argue that such structures 
can already be discerned in the most elementary notions of second quantiza- 
tion, albeit in disguised form. An examination of the methods traditionally 
used by physicists in dealing quantum mechanically with systems exhibiting 
an infinite number of degrees of freedom reveals, almost from the outset, 
the implicit use of module structures over algebras of functions (Section 2). 
By making these structures explicit and adapting some results of perturba- 
tion theory we arrive at an association between bare particles and finitely 
generated projective modules (Sections 3 and 4). In particular, rank one 
modules emerge naturally, for algebraic reasons, as the appropriate descrip- 
tors of bosons in this association. (This provides a possible setting for the 
development of standard geometric quantization theory.) As a first applica- 
tion of the formalism we show the existence of phononlike excitations in 
general many-fermion systems. 

When these ideas are further specialized (local) gauge theoretical no- 
tions arise in a natural way out of a consideration of the bundles obtained 
via Swan's theorem. These theories emerge moreover equipped with an 
interpretation linked directly to the geometrical entities associated with the 
underlying bundles. Thus for example in the line bundle (or rank one) case, 
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covariant exterior differentiation defined with respect to a connection on 
the bundle gives rise to a quantum mechanical version of the Lorentz force 
law (which now comes with an interpretation in terms of interaction 
vertices). This allows one to identify the gauge theory arising from a line 
bundle over an appropriate Lorentz manifold with that of the (homoge- 
neous) Maxwell field (Section 5). These ideas are then extended to the case 
of the classical Yang-Mills field (Section 6). 

Finally (Section 7), we use the formalism to independently derive the 
usual commutation relations appropriate to the quantum mechanics of a 
bare boson constrained to one degree of spatial freedom. It is perhaps worth 
noting that those relations emerge here as a result of relativistic considera- 
tions. 

2. SECOND QUANTIZATION 

The approach to problems involving very large numbers of degrees of 
freedom known as second quantization has its origin in the interpretation of 
SchrOdinger wave functions as descriptors of a genuine physical entity, some 
kind of "matter field" for example, rather than merely as vector states in the 
carrier space of a particular representation of the canonical commutation 
relations. Thus, under the regime of second quantization, a solution of the 
ordinary Schrrdinger equation 

h_ (x, t)+ H+(x, t)=0 
i 0t 

(1) 

which can be written 

~(x,t)=~ak(t)uk(x ) (2) 
k 

in terms of eigenfunctions uk of H, must itself be "quant ized"-- that  is to 
say, turned into an operator. The commutation rules for + and its canonical 
conjugate operator (defined by a variational principle, say) must be pre- 
scribed on an ad hoc basis. Returning to the expansion (2) one notes that 
each expansion coefficient ak(t ) can be expressed 

ak( t ) = f +(x, t )u~(x)d3x (3) 

granting that the formal manipulations involved can be perpetrated upon 
the operator ~. Thus each ak(t ) must also be considered to be an operator 
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(with commutation relations for different k inherited from those already 
adopted). Alternatively, one could start with operators ak(t ) and prescribe 
the canonical variable ~b as an operator through an expansion of the form 
(2) regardless of its origin. For example (Bjorken and Drell, 1964, p. 26) the 
free Klein-Gordon equation 

([] + m2)q~(x)=0 (4) 

has a Fourier integral solution in terms of normalized plane waves fk of the 
form 

t) = f[akf (x, t) + 4 f (x, t)] (5) 

and the associated free Klein-Gordon field is quantized when the ampli- 
tudes a k, a~. are made into operators (with a~ adjoint to ak) according to the 
specification 

= i f f : (x ,  t )goC,(x, t)d'x (6) 

where the right-hand side is actually independent of time and the commuta- 
tion relations for the operator @(x, t) and its canonical conjugate have been 
assigned. 

Another example is afforded by the second quantization of the Dirac 
field (Bjorken and Drell, 1964, Section 13.2) during the course of which a 
"field operator" is introduced by 

N 

X(x, t ) =  ~, u,~(x, t)a~ (7) 
a = l  

where the u~ are single-particle wave functions and the a~ are annihilation 
operators (Bjorken and Drell, 1964, p. 49). The point of this definition is 
that the single particle wave function u,, (x, t) can now be interpreted as the 
matrix element of the field operator X between the vacuum state and the 
single ai-particle state of the large notional underlying second quantized 
Hilbert space. Thus a second quantized matrix element is a function, not 
merely a scalar. This interpretation of second quantized matrix elements as 
being identical with first quantized wave functions is familiar in field theory 
and indeed forms the basis for the imposition of LSZ-type asymptotic 
conditions (Bjorken and Drell, 1964, p. 136). 
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Now there is a requirement implicit in the types of operator prescrip- 
tions exemplified by equation (2) and equation (3): namely, that one should 
be able to multiply second quantized operators by functions (to obtain new 
operators) according to the same rules by which one multiplies "first 
quantized" operators by scalars. That is to say, the second quantized 
operators are assumed to admit the linear (or module) action of some 
commutative algebra of functions. Moreover since elements of this algebra 
can appear as matrix elements of "field" (i.e., second quantized) operators, 
the implication is that the algebra already acts on a (dense) subspace of the 
imagined underlying Hilbert space, and it is this action which is inherited by 
the operators. Now if we think of the transition from first quantization to 
second quantization as giving rise to the replacement of first quantized 
matrix elements (constant scalars) by their second quantized analogs [ele- 
ments in our algebra of functions, according to the discussion following 
equation (7)] then this transition can be formally effected by assuming that 
the constant scalars are already contained in the function algebra--or, 
equivalently, that this algebra contains a unit. Thus we end up with a 
commutative algebra of functions containing a unit together with a module 
action on a dense subspace of the Hilbert space of second quantized states. 
It is the delineation of this apparently neglected structure (which results 
simply from the extension of the scalars demanded by the most elementary 
notion of second quantization) and its physical interpretation, which is the 
subject of the remainder of this paper. 

3. PROJECTIVE MODULES 

The essential feature of linear spaces when considered as modules over 
a field is that they are free: i.e., they are direct sums of copies of the 
coefficient field. (This is the module interpretation of the fact that bases 
exist in a finear space.) Now the module structures implied by the formal 
algebraic procedures just described in connection with the elementary ideas 
of second quantization must also be presumed to have this property of 
being direct sums of copies of the coefficient algebra: for, fixed sets of 
spanning vectors (e.g., eigenstates of the Hamiltonian, of the number 
operators, etc.) are retained upon second quantization, the only difference 
being that one now allows multiplication of members of these sets by 
elements from a larger class of coefficients. That is to say, tuples of scalar 
coefficients relative to some basis are simply replaced by tuples of functions 
(these functions subsequently appearing as matrix elements). This near 
identity of linear and (implied) module structures allows a direct correspon. 
dence between physical conclusions in the two cases to be made uncon. 
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sciously, since it hides the distinction between the two structures. This is 
presumably why the module structure has apparently gone unremarked. 
Now it happens that the class of module structures of physical interest must 
be enlarged in an apparently slight, but nonetheless crucial, manner. To 
show this, we consider the case of a free field scattered by some interaction 
(possibly including self-interactions if asymptotic conditions are assumed) 
possessing bound states. In terms of perturbation theory one considers the 
physical incoming field to be a perturbed version of an incoming field which 
has been "bare" in the remote past and which has achieved its physical or 
"dressed" status (prior to scattering) as a result of the application of the 
MMler operator f~(+) derived from the interaction dynamical operator 
U(t I, t 2 )(t 2 ~< t I ). Specifically, 

- v ( o ,  - ( 8 )  

(see Roman, 1965, Chap. 4). Thus, since the unperturbed incoming field is 
assumed to have no bound states, f~(+) maps (a dense subspace of) the 
Hilbert space ~bare  spanned by the bare incoming states to the Hilbert 
space ~Cphy s of true physical incoming states. Again because the unperturbed 
field has no bound states, this map has a left inverse f~(+)* [Roman, 1965, 
(4-117), (4-130)] and is consequently one-to-one. Thus we may realize an 
algebraic splitting of vector spaces 

v qFv tgqFv 
~phys ~ ~'~ bare ~etc  (9) 

where ~ v denotes a dense subspace of the Hilbert space ~ ,  and ~etc is the 
space containing the bound states (and possibly others). This splitting is of 
course completely trivial in the vector space setting, but let us now allow the 
scalars to be extended to some larger algebra in the manner prescribed by 
the implicit rules of second quantization. Then, according to these rules, the 
various linear operators must be presumed to preserve the resulting module 
structures as well. Consequently (9) holds also for the module structures 
(MacLane, 1967, Proposition 4-3, p. 16). Now since ~JCpXhys is supposed to 
describe the actual incoming physical states (which have been prepared 
from bare states in order to experience scattering at some time t > 0) the 
module structure it carries should be the usual one (this being the one 
yielding such close agreement with experiment, as in the case of QED for 

v f ree  module over the algebra in example). That is, 0Cphy s shou ld  be a 
bare since question. One can make no such confident claim for the module v 

bare states are of course physically inaccessible; moreover the usual per- 
turbation methods may lead to divergences, owing to the presence of bound 
states. In terms of (9) these result from the attempt to derive the possibly 
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numerically infinite contributions from ~etc in the analysis of ~Cphys, after 
which such contributions are subtracted (if possible) from the left-hand side 
to reveal information about ~ba~e" It is remarkable that as a statement 

ba~ fairly closely but moreover about modules, not only does (9) specify v 
does so independently of the structure of ~ t  v .  Namely (9) asserts that 

k/ ba~, being a direct summand of a free module, is projective (see MacLane, 
1967, for definitions and elementary propert ies)-- the nature of the other 
summand ( ~ t  v )  is irrelevant to this assertion. 

In summary, our algebraic transcription of the idea of renormalization 
amounts to the replacement of the free module structures already used 
implicitly to describe dressed states by projective (not necessarily free) 
module structures to describe bare states. This allows the bare states a 
considerably richer structure. 

4. FINITELY GENERATED PROJECTIVE MO D U LES  

We shall specialize first the module structures themselves, and subse- 
quently the algebra over which they are defined. In elementary quantum 
mechanics one may associate the notion of a particle with systems exhibiting 
finite degrees of degeneracy. For instance, particle states may occupy a 
finite-dimensional subspace of a Hilbert space, coming possibly from an 
irreducible representation of a compact symmetry group. Following the line 
of thought put forward above, the analogous property for the module 
version of this, describing presumably a field of bare particle states, would 
be that of being finitely generated (for definitions and properties of such 
modules see Bass, 1968, and Swan, 1968). Of course such a module would in 
general be infinite dimensional as a vector space over the scalar field. Now 
each finitely generated module M over a commutative algebra A comes 
equipped with a rank function, which is a map 

rkm: specA --, Y+, 

where spec A denotes the set of prime ideals of A and Z + the positive 
integers. (This function is locally constant when spec A is given the 
hull-kernel topology--cf .  Bass, 1968, p. 127.) Now it can be shown that if 

i C ~9 2(~ i ~ spec A, i = 1,2), then rk m ~ 1 -- rk M ~ Z" Consequently the rank 
function rk M is determined by its values on maximal ideals. This result 
shows also that if A is an integral domain rk M is constant [since (0) C ~ for 
all p ~ spec A]. This is of course trivially the case when A is a field, rk m in 
this case coinciding with the dimension of M as a vector space over A. We 
shall make the simplifying assumption that this constancy of rank extends 
to the cases we are considering, although without specifying A more closely 
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there seem to be no compelling physical reasons for excluding the more 
general case, other than the consequences set out below. We shall write rk M 
in this case. 

Thus, we are reduced to the consideration of finitely generated modules 
of constant rank (over a commutative unital complex algebra A as yet 
unspecified) as candidates for the description of bare particle fields. We aim 
to show first that in this context, rank 1 modules correspond to bosons. This 
follows from the following theorem. 

Theorem 4.1. (Swan, 1968, Proposition 8.2, p. 149) Let M be a 
finitely generated projective module of constant rank n. Then 
(1) A ~ M  is finitely generated and of constant rank for all i~>0, 
(2) A ,~ M has rank 1, 
(3) A ~M =0  for i > n,where A n denotes exterior product over A. 

In particular if rk M = 1, (3) gives 

A ~ M = 0  for i > 1  

But A I M  is the universal object for alternating A-module maps (Lang, 
1965, Chap. XVI, Section 6). That is to say, any alternating A-linear map f: 
| M --, P factors uniquely through the canonical map | M --, A ~ M which 
is zero in this case. Now any attempt to form an A-module P generated by 
/-fold antisymmetric tensors of elements from M would give rise to an 
A-module map sending generators of |  to generators of P which is 
alternating (since 2 is not a zero divisor in A) and which necessarily 
vanishes. Since all such attempts to antisymmetrize generators of | M fail, 
these generators must be symmetric. Consequently if they are to represent 
particle states, the particles must obey Bose-Einstein statistics. It follows 
that the modules representing (bare) fermion states must have ranks greater 
than 1. 

As our first application we shall consider the case of an infinite system 
of identical (bare) fermions. From the preceding we are led to consider a 
finitely generated projective module M of rank > 1 to represent the (dense) 
single bare particle states and the module 

i = O  

= A @ M @ A ~ M @  . . .  @A~kMM (lO) 

to represent a (second quantized) field of such (noninteracting) bare fer- 
mions. This is just an uncompleted version of the usual fermion Fock space 
construction except that the algebraic operations are conducted over the 
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algebra A. As a vector space over C (C  A), M is in general infinite 
dimensional and the direct sum in equation (10) would be nonterminating 
over C; but as a module over A, it has this novel feature [by (3) of Theorem 
4.1]. (One may note that the obvious C-linear map APM---,/x,~M is surjec- 
tive with nontrivial kernel, containing for instance elements of the form 
fa A b - a A fb, a, b E M, f E A. Consequently the above map splits and so, 
as a C-vector space, AAPM may be realized as a subspace of APM, for 
p/> 2). Moreover the last nonvanishing component in equation (10) has rank 
one [(2) of Theorem 4.1], signifying the presence in the bare fermion field of 
excitations having the appearance of free bosons, presumably capable of 
mediating some kind of "exchange" force between the fermions. If we 
imagine a fermion-fermion interaction to be switched on, the bare Fock 
states [equation (10)] will become dressed according to the appropriate 
analog of (9). But now the bosonlike excitations would themselves partake 
of the dressing and thereby acquire the appearance of having a mutual 
interaction. In sum, to the degree of approximation allowed by considering 
only dense manifolds of states (not to mention the hypotheses of constant 
rank and finite generation), one would expect an assemblage of physical 
interacting fermions to be accompanied by a cloud of bosonlike "excitons" 
which themselves mutually interact. This phenomenon is of course well 
known in many-body theory, where the excitons are known by various 
names (phonons, plasmons, etc.) depending on the context. Their bosonlike 
nature is usually assumed, although certain lengthy approximate calcula- 
tions (involving assumptions not dissimilar to those above concerning the 
finiteness of rank) have demonstrated it explicitly in some cases (see 
Bogoliubov, 1967, p. 221, for the case of metallic phonons). 

5. VECTOR BUNDLES AND GAUGE INVARIANCE 

We now turn to the choice of algebra A for a free relativistic field. To 
help motivate such a choice, let us consider the situation analogous to the 
one described by equation (3) in traditional quantum field theory. Here it 
has long been realized that physical meaning cannot be ascribed to individ- 
ual field operators defined at points of space-time, but only to suitably 
smeared versions of these notional pointwise field operators. This can be 
expressed figuratively in the form 

~p( f ) = f dp( x ) f (  x )d4x (11) 

where ~(x) denotes the pointwise field operator, where the underlying 
Hilbert space may be decomposed as a direct integral over energy- 
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momentum, and where f is chosen to be an infinitely differentiable function 
of the space-time point x, of compact support (see for example Segal, 1963, 
p. 37) whose Fourier transform is of sufficiently rapid decrease to ensure 
that ~ ( f )  is well defined as an operator on some dense domain in the 
Hilbert space. Here as in Section 2 there is an implied module action of the 
algebra of smooth functions on space-time (with pointwise operations) upon 
at least the dense domain specified. As well as the test functions f, our 
candidate for the algebra A must include also the constant functions on the 
presumed space-time manifold. Consequently we are led to consider as a 
simple possible candidate for A, the algebra of infinitely differentiable 
(complex) functions on a compact Minkowskian space-time (i.e., a compact 
simply connected, complete, proper Lorentzian 4-manifold with zero curva- 
ture), which corresponds physically to an empty finite universe. This choice 
of algebra would incorporate the test functions as well as the constants. We 
shall pursue some local consequences of the preceding formal discussion in 
this case while noting that compact space-times contain timelike loops 
which violate global causality: this is sometimes considered objectionable in 
general relativity. [Other choices of underlying manifold, possibly more 
reasonable physically, include S 4 considered as a conformal compactifica- 
tion of Minkowski space-time (cf. Atiyah and Jones, 1978), which will be 
taken up elsewhere. We note that if compactness is relinquished in the 
subsequent argument the manifold in question could be taken to be 
Minkowski space itself, with world lines of magnetic monopoles removed. 
The local assertions in the remainder of the paper would not then be 
affected.] 

Thus, according to the preceding argument, to describe bare particle 
states operated upon field observables smeared by infinitely differentiable 
complex test functions in an empty finite universe, we need to consider 
finitely generated projective modules over the algebra C~176 of infinitely 
differentiable complex functions on a manifold S of the type described 
above. Now, a theorem due primarily to Swan (see Bass, 1968; Swan, 1968) 
asserts that each such module can be realized as the module of global Coo 
sections of a uniquely determined complex differentiable vector bundle over 
S with fiberwise dimension (over a point in S) corresponding to the rank 
function evaluated at the corresponding maximal ideal in Coo(S). (For 
proof of a more general statement see Mulvey, 1976.) Thus we arrive at the 
study of complex vector bundles over a differentiable manifold, whose 
sections are to be interpreted as possible bare particle states. We note that 
in this association, line bundles (i.e., bundles with one-dimensional fiber) 
correspond to boson fields. 

We require now to identify the bundle(s) associated for example with 
bare fermions. To this end we note that since our manifold admits a proper 
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Lorentzian metric, the tangent bundle has transition matrices (in its local 
coordinate description) belonging to the proper Lorentz group. Conse- 
quently transition matrices for the cotangent bundle (i.e., the dual of the 
tangent bundle, identifiable with the bundle of differentiable 1-forms), 
being representable as the inverse transposed matrices of those used for 
the tangent bundle, also belong to this group. This is usually expressed in 
the physical literature by saying that the four-vector d x  ~' transforms like the 
coordinate vector x ~, as we transform from one Lorentz frame--i.e., local 
coordinate patch of our manifold--to another. Thus the global sections of 
the complexified cotangent bundle (i.e., the bundle of complex valued 
1-forms, which we shall denote by f~l) can be described locally as sets of 
four-vectors of complex differentiable functions defined in each frame, 
which transform according to the transition matrices of f~t: that is via 
proper Lorentz transformations. Specifically, we may write 

A(.~>~(.) = ~p(r (12) 

where q~(~) (respectively,),b(O)) represents a four-vector of complex differen- 
tiable functions defined relative to the Lorentz frame O(.) (respectively 0(8)) 
and A(~) represents the appropriate Lorentz transformation relating these 
frames via 

A(~)x(.) = x(~) (13) 

where x(~)= (x~)(~) etc., denote four-vectors relative to the frame O(~). A 
family of four-vector "wave" functions {~(.)) satisfying equation (12) now 
represents a global section of ~t. If this bundle (or strictly its module of 
sections) is to represent a bare particle it should be possible to perform a 
dressing perturbation on the four-component wave functions satisfying 
equation (12) to arrive at a description of the corresponding physical 
particle. Accordingly, let us suppose observer O(~) applies some dressing 
perturbation f~(+)(~) to a four-component wave function 4)(~) to obtain" f~(~)(+)~k(~)- 
If this dressing operation is to be Lorentz covariant we must have 

o r  

A ~(+)~ =o(+)~  (14) 

~(+)*A O(+)~ = ~(O) (~)) **(aO)~(a) ~'(a) (15) 

in the absence of bound states for the unperturbed system. Thus, writing 
equation (15) as 

V(A(~)) q)(~)= ),b(t)) (16) 



Second Quantization 39 

the effect, as far as the bare states are concerned when such a perturbation 
is switched on, is equivalent to the replacement of the transformation law 
equation (12) by one in which the Lorentz transformation (the A's) acts 
according to some representation V(A) of the proper Lorentz group. Now, 
the condition for the family of locally defined Dirac operators 

=T~ 3 (Einstein summation convention) 

to be covariant is precisely that wave functions satisfying equation (16), that 
is the wave functions representing the unknown physical particles we are 
seeking, should be carried by these operators to wave functions which also 
represent physical particles--i.e., also satisfying equation (16). Thus for ~k's 
satisfying equation (16) we should have 

<<,,r r 

In view of equation (16) this becomes 

,o,= 
o r  

: 

But the equation 

V(A) 

specifies V(A) precisely as the spinor representation (see Bjorken and Drell, 
1965, Section 2.2). Consequently a Lorentz covariant dressing of the states 
represented by the sections of ~2 ~ gives rise to wave functions which 
transform as Lorentz spinors and hence are appropriate to the description 
of physical sp in- l /2  fermions. Switching off the perturbation then reveals 
the sections of ~21 as having been appropriate to the description of single 
bare (incoming) spin-1/2 fermion states. 

Let us suppose now that single bare bosons are present. In our picture 
such states are represented by a complex (differentiable) line bundle, L say, 
over the manifold S (see section 4 above). Along with such a bundle comes 
certain standard geometrical items to which, in view of the preceding, we 
can now give physical interpretations. Thus, for such a bundle there always 
exist differentiable connections (or covariant derivatives). These can be 
viewed as additive bundle maps 

D: L ~ L| t 
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satisfying 

D(sf  ) = sDf + f|  

where s is a complex differentiable function on S, f is a section of L, and d 
denotes exterior differentiation (the latter producing sections of f~). The 
D's  are of course not unique but can be expressed locally, relative to some 
trivialization (U~)},, in the form 

D~) =d(~)+  +~) (17) 

for +(~)~ F(U~), Hom(L, L| F(U~), ~2'), and where d(~) represents 
exterior differentiation applied to local differentiable sections of the now 
trivial bundle LIU~ ) when these are realized as ordinary differentiable 
functions on U~). (Here F denotes the section functor a n d [  denotes 
restriction.) Having chosen such a D there is defined a bundle map 

Dl: L| I -o L| 2 

(where ~P = AP~ I) satisfying 

D'(f |  = f |  -t'- O f /~  to 

where d I is exterior differentiation dl: f ~ t  f~a (a bundle map). Now it is 
easily seen that 

DID: L -, L |  2 (18) 

is in fact a linear map of bundles and since 

Hom(L,  L |  2) ~ Hom(L,  L)| ~_~2 

DtD corresponds to a global 2-form, ~L say. Thus, we may write 

DtD( f )= f| (19) 

for a global section f of L. This 2-form has further the property of being 
closed and consequently it represents a certain cohomology class [~L] in 
/12(S,C), the second Cech (say) cohomology group of S, by de Rham's 
theorem. This class is independent of the choice of D and [(1/27ri)~L] is in 
fact an integral class [i.e., it is in the image of the map H2(S,Z) -, H2(S,C) 
induced by inclusion Z-,C].  One may choose D so that the ~'s (and 
consequently the corresponding q~L) are Hermitian: in this context this 
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means that ~b + ~=0 .  (For these and other facts see, for example, Vaisman, 
1973.) Moreover, ~L being closed, we have 

d2r~ L = 0  (20) 

Choosing an Hermitian connection, and writing ~L in the form 

~L = i g ( -  E t d x  ~ A dx I - E2dx 0/k  d x  2 - -  E3dx 0/k  dx  3 

"-}- B l d x  2 A dx  3 -- B 2 d x  I A dx  3 + B3dx  I A dx  2) (21) 

where g is some real constant, equation (20) is recognized as being equiva- 
lent to one half of Maxwell's homogeneous equations, namely, 

v A E =  - B  

and 

V .B=0  

Thus our considerations have led to the main ingredients of the 
prototype Abelian gauge theory, the local gauge group in this case being the 
structure group of the bundle L, which may always be reduced to U(1). 
Moreover the bundle formalism now has a direct physical interpretation. 
Thus consider (18) and equation (19). Since DtD is a bundle map, boson 
states represented by L are mapped to states represented by L@~ 2. But this 
bundle represents boson states combined with states representing pairs of 
(bare spin-I/2) fermions. Now clearly equation (19) expresses a version of 
the classical Lorentz law of force in coordinate free, exterior differential 
form for an appropriate choice of g. To see this connection explicitly we 
shall consider, rather heuristically, the case of a "wave packet" (a section of 
L) compactly supported in some neighborhood of the origin of some local 
frame and defined there by the function 

f (  x ~ ) = e x p ( -  s) 

where 

S 2 ~ X~X I't 

(Such a locally defined function can always be extended to a C ~ section of 
L.) 



42 Selesnick 

Then locally (dropping the parenthesized subscripts), 

D( f )= ~x~ dX~' + d/( f ) 

= -- f ( x ~ / s ) d x  ~ + ~b(f) 

where + is the map defining the connection form [equation (17)]. Now for s 
sufficiently small, x~ / s  ~p , ,  the associated energy-momentum four-vector, 
and f~.  1. That is to say, in a small enough neighborhood of the origin of 
this frame we may write 

D(1)=  - p~,dx~' +4,(1) 

Then 

Consequently 

o r  

D'D(1) = - Dp~ A dx ~ + (~L 

Dp~ A dx~ =0  

dp~ A dx ~ = - -  p ~  dx ~ A dx ~ (22) 

from equation (17), where Gdx ~ is the 1-form representing ~k. Quantizing 
the right-hand side of this equation according to the usual rule in which p~ is 
replaced by i 3 /3x  ~ we obtain 

aG 
dp~ A & ~  = --  i-G-;x ~ & A & ~  

But the Lorentz law of force may be written [Misner et al., 1973, p. 73, 
equation (3.4)] 

G=eGax  

where F~ is the usual skew-symmetric electro-magnetic tensor. The previous 
equation then reads 

eF~dx ~ A dx ~ = - i-~x~ dX A dx ~ 
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Equating coefficients of dx ~/X dx ~ we obtain 

2eFt, = - i ax u ax . 

= - i ( i g F ~ , )  from equation (21) 

= g F ~  

Thus g =2e and we may write 

~L = ig�89 F~, dxt" /~ dx" 

=-- ieF 

Conversely, with this choice of ~t. and upon quantization, we recover from 
equation (22) [and as a consequence of equation (19)] the Lorentz law of 
force in the form 

dp~ A dx ~ = e F ~ d x  ~ A dx ~ 

Recalling that ~L also represents the bundle map DiD: L ~ L|  2 we 
have the following interpretation of the above relations: Each boson state 
(i.e., section of L) gives rise by the "Lorentz force law" prescription (i.e., the 
map D i D )  to a state representing the interaction of two fermions with a 
boson (i.e., a section of L|  in the language of Feynman graphs, a 
two-fermion, one-boson interaction vertex. This rather precise interpretation 
should be compared with the physical notion of a force being mediated 
between fermions by the exchange of bosons. 

The fact that [eF/2~r] is an intergral class implies that charge is 
quantized. This has been noted (Sniatycki, 1974) in the context of geometric 
quantization theory to which our considerations are related in the following 
way. The real contangent bundle f ~  over S has itself the structure of a 
symplectic manifold (with an appropriately chosen symplectic form). Start- 
ing with our complex line bundle L on S we may pull L along the projection 
p: f ~  ~ S to obtain a line bundle p*L over the manifold ~ .  The closed 
2-form associated with this bundle may be taken to be the pullback P*~L of 
~L and consequently eo*F/2~r represents an integral class in HE(f~,C). 

The fact that [eF/2~r] is an intergral class implies that charge is 
quantized. This has been noted (Sniatycki, 1974) in the context of geometric 
quantization theory to which our considerations are related in the following 

Now we note that if A~ denotes a locally defined electromagnetic 
four-vector potential, the local q,(,) in equation (17) may be taken to be 

q~(~,) = -- 2 ieA~,dx~,,) 
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[since then d I+~l = DID(l)[ ~) = CLI~)] and consequently 

D~,~) = d~,,~ - 2ieA~,dx~,~) 

= dx~'~-~-~7 - 2ieA~,dx~']~o 

=(a~,-2ieA~,)dx*'l{, ,  , 

Thus the connection D is seen to be precisely the contracted differential 
version of the "minimal coupling" (of electrons to photons) of elec- 
trodynamics. This is entirely consistent with our preceding interpretation of 
this interaction in terms of the underlying bundles themselves. The usual 
forms of local gauge covariance for the minimal coupling now appear as a 
consequence of the presence of an underlying bundle (or projective module). 
Similarly, the gauge covariance of F itself follows from the fact that it is a 
global section'of the bundle ~2[~Hom(L, L |  See Vaisman (1973), 
Section 5.3. Since it is gauge covariant, the usual Lagrangian density, which 
may be written 

e = - � 8 8  

*F denoting the Hodge dual of F with respect to the Lorentz metric, is 
gauge invariant. Variation of E leads to the other pair of Maxwell's 
homogeneous equations in the form 

d2*F=0 

Now the field, in so far as it is determined by Maxwell's equations, involves 
only states associated with a two-fermion vertex, according to our interpre- 
tation of the 2-form representing D1D. Moreover, the only higher-order 
fermion vertices which can arise are those of even order built up from 
antisymmetric combinations of two-fermion vertex states. In our context, 
the only possible such vertex is the four-fermion vertex represented by the 
4-form 

( i e ) 2 F  A F = - (ie)22E-B dx ~ A dx  I A dx  2 A dx 3 

which vanishes for free solutions of the Maxwell equations. Consequently, 
the description of this minimal (bare) electron-electron interaction must be 
contained entirely in the first two orders of perturbation via Feynman 
graphs, since no higher-order vertices contribute. This accords well with 
experiment even for the electromagnetic interaction of dressed particles for 
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which the low-order graphs already give close agreement with experiment 
(Scadron, 1979, Chap. 11). In terms of a perturbation expansion via 
Feynman graphs this would seem to indicate that contributions from the 
second and higher powers of the expansion parameter e2/4~r (correspond- 
ing to contributions from fourth- and higher-order graphs) can be neglected, 
whereas the term involving this parameter to first power must be retained. 
One notes that this property, which characterizes the "weakness" of the 
interaction (i.e., the "smallness" of e) has been obtained without reference 
to the actual numerical value of the coupling constant e. Indeed it is 
independent of this value, originating rather in the geometry of the underly- 
ing bundle. 

If one were now to proceed with the traditional canonical quantization 
procedure, the Lagrangian density E would be varied with respect to the 
independent dynamical variables A~, after which the A~ and their resulting 
canonical conjugates would be treated as operators obeying externally 
imposed commutation relations. These commutation relations are tradition- 
ally copied from those already assumed for the case of a finite number of 
degrees of freedom. We shall show in Section 6 that our formalism yields an 
irreducible representation of these commutation relations for a boson 
constrained to one degree of spatial freedom thereby showing that this 
essential feature of elementary quantum mechanics may actually be derived 
ab initio from our algebraic interpretation of second quantization (which 
did not itself involve any assumptions concerning commutation relations) 
together with some relativistic considerations. Before doing so, however, we 
digress briefly to extend some of the preceding ideas to the case of the 
prototype non-Abelian gauge theory, namely, that of Yang and Mills 
(1954). 

6. THE YANG-MILLS FIELD 

Recall that the physical basis for the adoption of the isotopic spin 
formalism was the observed similarities between the neutron and proton in 
the absence of electromagnetic effects. This led to the idea that these entities 
represented two-particle states of a single "nucleon" field, requiring a pair 
of spinors for its description and obeying some higher symmetry-the 
breaking of which (for instance by the switching on of the electromagnetic 
field) was held responsible for the appearance of two-particle states with 
slightly different masses. In our picture this would amount locally to the 
replacement of ~'~1 by ~"~l~'~l, the two components representing the two 
(bare) nucleon components. Globally, this entails the replacement of the line 
bundle L in the "interaction" bundle L |  I (locally isomorphic to f]l) by a 
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two-dimensional bundle B(B| ! being locally isomorphic to ~l ~f~l). By 
analogy with the case considered in the last section, we are led to consider 
connections 

D: B --, B| I 

which are to be interpreted as contracted versions of a minimal coupling of 
the B field to the bare (complex) nucleon field. The associated bundle map 

D1D: B---, B|  2 

now appears as a 2 • 2 matrix of 2-forms, by virtue of the bundle isomor- 
phism Hom(B, B |  B) |  2. The local gauge group in this 
case should appear as a subgroup of the structure group of B which can 
always be reduced to the ur, itary group--U(2) in this case. As is well known 
the choice of the isotopic gauge group SU(2) is consistent with the physical 
facts. Our bundle B should then represent states of the pion field mediating 
an interaction between the nucleons, in precise analogy with discussion in 
the preceding section. In dUS case the connection D is given locally by an 
equation similar to that of equation (7) of Yang and Mills (1954). That is, 
locally (dropping the parenthesized subscripts used earlier) 

O = d ~ ,  +-ig(b,.1")dx ~' 

=(O~,+--ig(b/~'))dx , 

where each b. is an (isotopic) 3-vector field, ~- is the triple of Pauli matrices 

1 o) 
-o), -1 

and g is a coupling constant. 
Now in general for a connection expressed locally in the form 

where locally 

D = d + ~  

to:  B ~ B| 1 

is a matrix of 1-forms, it is easy and standard that the matrix of 2-forms 
representing D~D may be expressed locally in the form 

D~D = d l ~  -- ~o A 
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where the exterior operations are performed matrixwise. For a matrix of 
l-forms expressed in the form 

a tedious calculation shows that 

d]~/ -  T/A ~/=-- {[( a ~  3x ~ 3x~, ~ ) + 2 i ~  A ~&,]. ,r}dx~Adx " 

So with 

w = - ig(h~. .r ) dx ~ 

we obtain as a local representation of the matrix of 2-forms DID = ~B, 

]} 3x" axe)  +2gb~ Ab~ "z dx~ 'Adx~ 

Thus locally 

0 B "- ig(f.~" 1")dx" A dx" (23) 

where the f~,~ are precisely the Yang-Mills field strengths if g = - e [Yang 
and Mills, 1954, equation (9)]. Since ~s  is in fact globally defined as a 
bundle map 

~s:  B --, B |  2 

it commutes with the action of the structure group of B: that is to say, is 
covariant under local gauge transformations. Consequently the Lagrangian 
density (for the B field) 

= - �88 

is gauge invariant. However, in this case since gauge invariance of the 
Lagrangian prevents the appearance of mass terms, the field equations 
arising from this or any other gauge invariant Lagrangian cannot specify the 
(massive) rr-meson field completely (cf. Taylor, 1979). Thus we cannot make 
assertions concerning the strength (or weakness) of the rr-mesic interaction 
analogous to those made earlier for the electromagnetic interaction. The 
problem of the missing mass terms must therefore be addressed by invoking 
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some symmetry-breaking mechanism such as that of Higgs (Taylor, 1979). 
This and other more exotic forms of symmetry breaking (which involve the 
characteristic classes of the bundles whose connections are specified by 
solutions of the Yang-Mills field equations) may be conducted at the 
bundle level and will be considered elsewhere. 

7. COMMUTATION RELATIONS 

In this concluding section we show that the formalism developed above 
leads naturally to irreducible representations of the usual commutation 
relations for a boson restricted to one degree of spatial freedom. Covariant 
suppression of two degrees of spatial freedom in the considerations of 
Section 5 leads to the choice of a compact two-dimensional Minkowskian 
space-time (i.e., a compact, simply connected, proper, flat Lorentz manifold 
of dimension 2) to support the line bundles whose sections are to represent 
boson states. Now a theorem of Kuiper (Kuiper, 1953, p. 79-87) asserts that 
the 2-torus T 2 is the only such manifold, so we are reduced to a consider- 
ation of line bundles on this space. These have been studied and the results 
may be described as follows (cf. Selesnick, 1979). If T 2 is realized as R2/7l 2, 
where Z 2 is embedded for simplicity as the standard lattice in R 2, then there 
is an isomorphism between the group of equivalence classes of line bundles 
on T 2 (with group operation induced by tensor product of fibers) and the 
group (---/x 2Z 2_~ Z) of alternating real-valued bilinear forms on R 2 which 
are integer valued on Z 2. [For a line bundle L the corresponding o can be 
realized as the element in H2(T2,C) determined by D1D for some connec- 
tion D on L. As such o can also be expressed in differential form via 
DeRham's theorem as the class represented by a constant multiple of 
d x ~  ~ (cf. Selesnick, 1979, Proposition 3.1).] The C~~ of 
sections corresponding to some o may be described explicitly as follows. 
Choose any function 

F: Z 2 -~R 

satisfying the congruence 

F ( m + n )  = F ( m ) +  F ( n ) +  o(m,n) mod 2 

for m, n E Z  2. Then the C~(TZ)-module of sections of the bundle corre- 
sponding to 0 is isomorphic with the module of C ~ functions f: R 2 --,r 
satisfying the relation 

f (x  + n) ---- f (x)  exp ~ri[F(n) + a(x, n)] 

for any x ~ R 2 , n E Z  2. 
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Now the C ~ sections of any bundle over a compact manifold equipped 
with an appropriate measure may be densely embedded (as a C-vector 
space) into an essentially unique separable Hilbert space: one chooses a 
unitary structure in the bundle, forms the usual L 2 inner product on the 
space of sections and then completes the resulting pre-Hilbert space. In the 
case at hand, with Haar measure on T 2, the inner product for L 2 sections 
can be expressed by 

<f, g) = ff(x) g(x) ax 

where P is a fundamental domain in R 2, dx  denotes Lebesgue measure on 
R 2 and f and g are Borel functions satisfying the above relation specifying 
them as sections (with fv I f [ 2dx < ~ ,  fpl g l 2dx < oo) for some choice of F. 
The resulting Hilbert space is independent (up to equivalence) of the choices 
of F and of unitary structure and we shall denote it by %o. 

We shall denote the elements of T 2 locally by x = ( x  ~ x 1) with the 
implied physical interpretation given to the local parameters x ~ and x ~. To 
determine appropriate commutation relations we need to examine the effect 
of translations by elements (x ~ x 1) upon states (i.e., sections of the line 
bundle, denoted L, determined by 0). Now the translations by some fixed 
x 0 = ( x  ~ x~) of a section of L yields a section of t-*oL where 

~'x0:T2 --" T2 

denotes the action of translation by x 0 and the asterisk superscript denotes 
bundle pull-back. So in order to obtain a full unitary automorphism of the 
space of sections of L induced by this translation we need to follow the act 
of translation by some unitary bundle isomorphism 

~: rx*0L -~ L 

for each x o. Then the resulting operator would be given, for a section f of L, 
by a linear operator of the form 

V(Lx0)(/)= 

Now it is not difficult to show that up to an arbitrary unitary phase factor 
the bundle isomorphism ~ is implemented by fiberwise multiplication by the 
function 

~ ( x ) = e x p ~ i o ( x , x  0) 

With this choice, and dropping the ~ reference on the left, we obtain finally 
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V(x 0) defined by 

V(x 0 )( f )(x) = ~ (x) ~-*0( f )(x) 

=exp t r io(x,x0)f(x+ x0) 

Clearly, the operators V(x) are unitary when L is given any of its pre-Hilbert 
structures and so they extend to unitary operators on ~o.  These operators 
constitute a projective unitary representation of the group R 2 belonging to a 
class first investigated by Cartier (Cartier, 1966). In particular, his results 
(Cartier, 1966, Section 12) apply to show that this representation is irreduci- 
ble for any nonzero o (and consequently unique up to unitary equivalence 
for each such o by the Stone-von Neumann Theorem) since the standard 
lattice is principal relative to the nondegenerate form o. We verify im- 
mediately that the V(x) satisfy the Weyl commutation relations 

V ( x ) V ( y ) = e x p ~ i o ( x , y ) V ( x + y )  

leading to 

V ( x ) V ( y ) = e x p 2 ~ i o ( x , y ) V ( y ) V ( x )  

and, in infinitesimal form with 

V(tx) : e -i'R(x), tER  (24) 

to  

[ R ( x ) , R ( y ) ] : - - 2 ~ i o ( x , y )  (25) 

with the usual domain conventions applying to the commutator. 
Reverting to the interpretation in terms of connections, etc., one may 

abuse the notation and write, for some Hermitian connection D on L, 

DID = ig dx ~ A dx I 

where g is real. Since [DtD/2~ri] is an integral class in H2(T2,C) we may, 
without loss of generality, put 

g _ 
2---~ - n g ~  

for some n EZ and some nonzero g0ER which is the image of the generator 
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of H2(T2, R) establishing some isomorphism 

h 2 ( r ~ , R ) (  = A 2 a  ~) ---R 

Thus 

DID =2~ring o dx ~ A dx l 

and the associated "Lagrangian density" is proportional to 

4rr2n2g g dx ~ A dx I 

The Lagrangian achieves an extreme nonzero value when n 2=  I, in which 
case we write 

4~rZg g = h 

where h is a certain constant associated with the minimum energy density. 
Now if we had at the outset chosen the lattice kT/2 (where k is a real 

constant) then the considerations leading to the representation V and the 
conclusions concerning its irreducibility would remain unaffected except 
that 0 would be replaced by o / k  2 which is integer valued on the lattice kZ 2 
and with respect to which this lattice is principal. [Equivalently one could 
define a new representation by x -~ V(k- Ix)]. Conducting this rescaling with 

k 2 = g o  2 

= 4 , / rE /h  

=27r /h  

the commutation relations equation (25) begin to assume a more familiar 
form. 

This rescaling of the dimensions of the fundamental domain of the 
standard lattice, when considered as the result of applying the automor- 
phism of the coefficient field 0~ induced vby multiplication by go I, is 
tantamount to redefining the isomorphism H2(T2,R)-~R used above to be 
the one in which the generator of the cohomology space is mapped to 1. 
With this generator represented by the differential form dx ~ A dx 1 the above 
isomorphism A2R 2 --,R defines an alternating bilinear map a on R 2 for 
which 

o((1,0), (0 ,1) )=1 
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With this choice for o, equation (25) now yields 

[ R ( 1 , 0 ) ,  R ( 0 ,  1)] : --  h; (26) 

But from equation (24) the operator  R(1,0) is the infinitesimal generator  of  
the one-parameter  unitary group associated with time (i.e., x ~ translations. 
Consequent ly  this operator  should represent the observable associated with 
energy-momentum and we may write 

R(1,0)--e 

Similarly R(0, 1) represents the observable associated with space (i.e., 
x ~) translations and we may write 

R ( 0 , 1 ) ~ Q  

Equat ion (26) now assumes the even more familiar form 

[ P , Q ] =  - h i  

Since the representation is irreducible an application of  the von 
N e u m a n n  commuta to r  theorem shows that any observable belongs to the 
W* algebra generated by P and Q and the usual paraphernal ia  of  elemen- 
tary quan tum mechanics can be formally built up, though the states in this 
case are not  represented by "wave functions" in the SchrOdinger sense. In 
fact there is a relativistic interpretation which will be taken up elsewhere. 
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